初中数学例题解析:关于因式的应用不灵活的问题
【例题】若k为任意整数,则\(\displaystyle {{\left( {2k+3} \right)}^{2}}-4{{k}^{2}}\)的值总能( )
A.被2整除
B.被2整除
C.被2整除
D.被7整除
\(\displaystyle \begin{array}{l}{{\left( {2k+3} \right)}^{2}}-4{{k}^{2}}\\=\left( {2k+3+2k} \right)\left( {2k+3-2k} \right)\\=3\left( {4k+3} \right)\end{array}\)
所以该整式能被3整除,所以\(\displaystyle {{\left( {2k+3} \right)}^{2}}-4{{k}^{2}}\)的值总能被3整除。
